Лицей-интернат естественных наук

Физико-Технический Лицей №1
   
   

Карно Никола Леонар Сади (1796-1832гг.) - талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя. 

   

Как вспомогательное средство для своих исследований Карно в 1824 году изобрёл (на бумаге) идеальную тепловую машину с идеальным газом в качестве рабочего тела. Важная роль двигателя Карно заключается не только в его возможном практическом применении, но и в том, что он позволяет объяснить принципы действия тепловых машин вообще; не менее важно и то, что Карно с помощью своего двигателя удалось внести существенный вклад в обоснование и осмысление второго начала термодинамики. 

Все процессы в машине Карно рассматриваются как равновесные (обратимые). 

Обратимый процесс – это такой процесс, который протекает настолько медленно, что его можно рассматривать как последовательный переход от одного равновесного состояния к другому и т. д., причём весь этот процесс можно провести в обратном направлении без изменения совершённой работы и переданного количества теплоты. (Заметим, что все реальные процессы необратимы

В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и двух адиабат. Кривые A - B и C - D - это изотермы, а B - C и D - A - адиабаты.

Сначала газ расширяется изотермически при температуре T1. При этом он получает от нагревателя количество теплоты Q1. Затем он расширяется адиабатно и не обменивается теплотой с окружающими телами. Далее следует изотермическое сжатие газа при температуре Т2. Газ отдает в этом процессе холодильнику количество теплоты Q2. Наконец газ сжимается адиабатно и возвращается в начальное состояние. 

При изотермическом расширении газ совершает работу A'1>0, равную количеству теплоты Q1. При адиабатном расширении B - C положительная работа А'3 равна уменьшению внутренней энергии при охлаждении газа от температуры Т1 до температуры Т2: A'3 =-dU1.2=U(T1)-U(Т2). 

Изотермическое сжатие при температуре Т2 требует совершения над газом работы А2 . Газ совершает соответственно отрицательную работу А'2 = -A2 = Q2. Наконец, адиабатное сжатие требует совершения над газом работы А4 = dU2.1 . Работа самого газа А'4 = -А4 = -dU2.1 = U(T2)-U(Т1). Поэтому суммарная работа газа при двух адиабатных процессах равна нулю. За цикл газ совершает работу А'=A'1+А'2=Q1+Q2=|Q1|-|Q2|. Эта работа численно равна площади фигуры, ограниченной кривой цикла 

Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах A - B и C - D. Расчеты приводят к следующему результату: 

      (2)

Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя. 

Главное значение полученной Карно формулы (2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины. 
Карно доказал следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т1 и холодильником температуры Т2, не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины . 

КПД реальных тепловых машин

Формула (2) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, КПД равно 1. В реальных тепловых двигателях процессы протекают настолько быстро, что уменьшение и увеличение внутренней энергии рабочего вещества при изменении его объема не успевает компенсироваться притоком энергии от нагревателя и отдачей энергии холодильнику. Поэтому изотермические про цессы не могут быть реализованы. То же относится и к строго адиабатным процессам, так как в природе нет идеальных теплоизоляторов. Осуществляемые в реальных тепловых двигателях циклы состоят из двух изохор и двух адиабат (в цикле Отто), из двух адиабат, изобары и изохоры (в цикле Дизеля), из двух адиабат и двух изобар (в газовой турбине) и др. При этом следует иметь в виду, что эти циклы могут также быть идеальными, как и цикл Карно. Но для этого необходимо, чтобы температуры нагревателя и холодильника были не постоянными, как в цикле Карно, а менялись бы точно так же, как меняется температура рабочего вещества в процессах изохорного нагрева и охлаждения. Другими словами, рабочее вещество должно контактироваться с бесконечно большим числом нагревателей и холодильников — только в этом случае на изохорах будет равновесная теплопередача. 

Разумеется, в циклах реальных тепловых двигателей процессы являются неравновесными, вследствие чего КПД реальных тепловых двигателей при одном и том же температурном интервале значительно меньше КПД цикла Карно. Вместе с тем выражение (2) играет огромную роль в термодинамике и является своеобразным «маяком», указывающим пути повышения КПД реальных тепловых двигателей.

В цикле Отто сначала происходит всасывание в цилиндр рабочей смеси 1—2, затем адиабатное сжатие 2—3 и после ее изохорного сгорании 3—4, сопровождаемого возрастанием температуры и давления продуктов сгорания, происходит их адиабатное расширение 4—5, затем изохорное падение давления 5—2 и изобарное выталкивание поршнем отработанных газов 2—1. Поскольку на изохорах работа не совершается, а работа при всасывании рабочей смеси и выталкивании отработавших газов равна и противоположна по знаку, то полезная работа за один цикл равна разности работ на адиабатах расширения и сжатия и графически изображается площадью цикла. 

Сравнивая КПД реального теплового двигателя с КПД цикла Карно, нужно отметить, что в выражении (2) температура Т2 в исключительных случаях может совпадать с температурой окружающей среды, которую мы принимаем за холодильник, в общем же случае она превышает температуру среды. Так, например, в двигателях внутреннего сгорания под Т2 следует понимать температуру отработавших газов, а не температуру среды, в которую производится выхлоп.

На рисунке изображен цикл четырехтактного двигателя внутреннего сгорания с изобарным сгоранием (цикл Дизеля). В отличие от предыдущего цикла на участке 1—2 всасывается. атмосферный воздух, который подвергается на участке 2—3 адиабатному сжатию до 3•10 6 —3•10 5 Па. Впрыскиваемое жидкое топливо воспламеняется в среде сильно сжатого, а значит, нагретого воздуха и изобарно сгорает 3—4, а затем происходит адиабатное расширение продуктов сгорании 4—5. Остальные процессы 5—2 и 2—1 протекают так же, как и в предыдущем цикле. 

Следует помнить, что в двигателях внутреннего сгорания циклы являются условно замкнутыми, так как перед каждым циклом цилиндр заполняется определенной массой рабочего вещества, которая по окончании цикла выбрасывается из цилиндра. 

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится. 

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и T2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно: 

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания. 

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения 

  

где T1 - абсолютная температура нагревателя, а Т2 - абсолютная температура холодильника. Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.

 
 
 
Используются технологии uCoz